Indian Statistical Institute, Bangalore

B. Math.(hons.), Third Year, First Semester Probability-III End term Back-paper Examination

Maximum marks: 50

Time: 3 hours

Answer any 5, each question carries 10 marks.

Kindly ensure your writing is clear and if you are using any results please provide as many details as you can.

- 1. Let Q be a non-empty set. Let \mathcal{F}_0 be the collection of all subsets $A \subseteq Q$ such that either A or A^c is finite.
 - (a) Show that \mathcal{F}_0 is a field. Further, define for $E \in \mathcal{F}_0$ the set function P by

$$P(E) = \begin{cases} 0, & \text{if } E \text{ is finite,} \\ 1, & \text{if } E^c \text{ is finite.} \end{cases}$$

- (b) If Q is countably infinite, show that P is finitely additive but not σ -additive.
- (c) If Q is uncountable, show that P is σ -additive on \mathcal{F}_0 .
- 2. (a) Let $X = (X_1, \ldots, X_n)$. Show that X is an \mathbb{R}^n -valued random variable if and only if X_1, \ldots, X_n are (real-valued) random variables. How does $\sigma(X)$ relate to $\sigma(X_1), \ldots, \sigma(X_n)$?
 - (b) Let (Q, \mathcal{B}, P) be $([0, 1], \mathcal{B}([0, 1]), \lambda)$, where λ is the Lebesgue measure on [0, 1]. Define the process $\{X_t, 0 \le t \le 1\}$ by

$$X_t(\omega) = \begin{cases} 1, & \text{if } t \neq \omega, \\ 0, & \text{if } t = \omega. \end{cases}$$

Show that each X_t is a random variable. What is the σ -field generated by $\{X_t, 0 \le t \le 1\}$?

3. (a) Suppose $T : (\Omega_1, \mathcal{B}_1) \to (\Omega_2, \mathcal{B}_2)$ is a measurable mapping and X is a random variable on Ω_1 . Show that $X \in \sigma(T)$ if and only if there exists a random variable Y on $(\Omega_2, \mathcal{B}_2)$ such that

$$X(\omega_1) = Y(T(\omega_1)), \quad \forall \omega_1 \in \Omega_1.$$

(b) Suppose $\{X_n : n \ge 1\}$ are independent random variables. Show that

$$P\left(\sup X_n < \infty\right) = 1$$

if and only if

$$\sum_{n=1}^{\infty} P(X_n > M) < \infty, \quad \text{for some } M.$$

4. (a) Suppose $\{X_n : n \ge 1\}$ are i.i.d. random variables with

$$P(X_n = 0) = P(X_n = 2) = \frac{1}{2}.$$

Show that $\sum_{n=1}^{\infty} \frac{X_n}{3^n}$ converges almost surely.

(b) Suppose that $f \in C([0, 1]; \mathbb{C})$, and for $x \in [0, 1]$, define

$$p_n(x) := \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

Then, show that

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f(x) - p_n(x)| = 0$$

- 5. (a) Suppose X and Y are i.i.d. with mean zero and variance 1, and suppose further that $(X + Y)/\sqrt{2} \stackrel{d}{=} X \stackrel{d}{=} Y$. Then, show that both X and Y have N(0, 1) distribution.
 - (b) Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables such that $X_n \sim \text{Binomial}(N_n, p_n)$ for all $n \geq 1$. Suppose that as $n \to \infty$, $N_n \to \infty$, $p_n \to 0$, and $N_n p_n \to \lambda$, where $\lambda \in (0, \infty)$. Then $X_n \xrightarrow{d} X$ where $X \sim \text{Poisson}(\lambda)$.
- 6. If $\mu_n \in Prob(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and $\mu_n \to \mu$ vaguely for some Borel measure, then $\mu(\mathbb{R}^d) = 1$ iff $\{\mu_n\}_{n=1}^{\infty}$ is tight.
- 7. A fair 6-sided die with faces numbered from 1 to 6 is rolled repeatedly, and for $n \in \mathbb{N}$, the outcome of the *n*-th roll is denoted by Y_n (it is assumed that $\{Y_n\}_{n\in\mathbb{N}}$ are independent of each other). For $n \in \mathbb{N}_0$, let X_n be the remainder (taken in the set $\{0, 1, 2, 3, 4\}$) left after the sum $\sum_{k=1}^{n} Y_k$ is divided by 5, i.e., $X_0 = 0$, and $X_n = (\sum_{k=1}^{n} Y_k) \mod 5$, for $n \in \mathbb{N}$, making $\{X_n\}_{n\in\mathbb{N}_0}$ a Markov chain on the state space $\{0, 1, 2, 3, 4\}$. Then,
 - (a) Write down the transition matrix of the chain.
 - (b) Classify the states, separating recurrent from transient ones, compute the period of each state. What will be the transition matrix in canonical form?